PROBLEM SET 8

JIAHAO HU

Problem 1. A distribution F is called harmonic if $\sum_{1}^{n} \partial_{j}^{2} F = 0$. If F is harmonic and tempered, prove that F is a polynomial.

Proof. Notice that Fourier transform of a polynomial is a linear combination of Dirac function and its derivatives, it suffices to show $\hat{F} = \sum_{|\alpha| \leq N} c_{\alpha} \partial^{\alpha} \delta$ for some constants $c_{\alpha}, |\alpha| \leq N$.

Since $\sum \partial_j^2 F = 0$, we have $2\pi i |\xi|^2 \hat{F} = 0$, so either $\hat{F} = 0$ in which case we are done, or supp $\hat{F} = \{0\}$. Now suppose supp $\hat{F} = \{0\}$, pick a bump function $\psi \in C_c^{\infty}$ with $\psi(x) = 1$ for $|x| \leq 1/2$ and $\psi(x) = 0$ for $|x| \geq 1$. Then on the one hand by continuity of \hat{F} , there exists m, N, C such that

$$|\langle \hat{F}, \phi \rangle| \le C \sum_{|\alpha| \le N} \|\phi\|_{(m,\alpha)}$$

for all $\phi \in C_c^{\infty}$. On the other hand since supp $\hat{F} = 0$, we have $\langle \hat{F}, \phi \rangle = \langle \psi \hat{F}, \phi \rangle = \langle F, \psi \phi \rangle$, so (by enlarging constant C if necessary)

$$\begin{split} |\langle \hat{F}, \phi \rangle| &\leq C \sum_{|\alpha| \leq N} \|\psi \phi\|_{(m,\alpha)} = C \sum_{|\alpha| \leq N} \sup_{|x| \leq 1} (1+|x|)^m |\partial^{\alpha}(\psi \phi)(x)| \\ &\leq C \sum_{|\alpha| \leq N} \sum_{\beta+\gamma=\alpha} \sup_{|x| \leq 1} |\partial^{\beta}\psi(x)| |\partial^{\gamma}\phi(x)| \\ &\leq C \sum_{|\alpha| \leq N} \sup_{|x| \leq 1} |\partial^{\alpha}\phi(x)|. \end{split}$$

We claim $\langle \hat{F}, \phi \rangle = \langle \hat{F}, T_N \phi \rangle$ for all $\phi \in C_c^{\infty}$, where $T_N \phi$ is the Taylor series of ϕ at 0 up to degree N. Indeed, let $\eta = \phi - T_N \phi$, then $\partial^{\alpha} \eta(0) = 0$ for $|\alpha| \leq N$. Consider $\eta_k(x) = \eta(x)(1 - \psi(kx))$, then for $|\alpha| \leq N$ we have (again C is a positive constant subject to change),

$$\begin{split} \|\partial^{\alpha}\eta - \partial^{\alpha}\eta_{k}\|_{u} &= \sup_{|x| \leq 1/k} |\partial^{\alpha}(\eta(x)\psi(kx))| \\ &\leq C \sum_{\beta+\gamma=\alpha} \sup_{|x| \leq 1/k} |(\partial^{\beta}\eta)(x)| \cdot k^{|\gamma|} \sup_{|x| \leq 1/k} |(\partial^{\gamma}\psi)(kx)| \\ &\leq C \sum_{\beta+\gamma=\alpha} \sup_{|x| \leq 1/k} |x|^{N+1-|\beta|} \cdot k^{|\gamma|} \|\partial^{\gamma}\psi\|_{u} \text{ by Taylor's theorem for } k \text{ big} \\ &\leq \frac{C}{k} \sum_{|\gamma| \leq N} \|\partial^{\gamma}\psi\|_{u} \to 0 \quad \text{as } k \to \infty. \end{split}$$

It the follows that $|\langle \hat{F}, \eta - \eta_k \rangle| \leq C \sum_{|\alpha| \leq N} \sup_{|x| \leq 1} |\partial^{\alpha} \eta - \partial^{\alpha} \eta_k(x)| \to 0 \text{ as } k \to \infty,$

hence $\langle \hat{F}, \eta \rangle = \lim_{k \to \infty} \langle \hat{F}, \eta_k \rangle = 0$ since η_k is supported away from 0. Therefore

$$\langle \hat{F}, \phi \rangle = \langle \hat{F}, T_N \phi + \eta \rangle = \langle \hat{F}, T_N \phi \rangle$$

This implies, for all $\phi \in C_c^{\infty}$, we have

$$\begin{split} \langle \hat{F}, \phi \rangle &= \langle \hat{F}, \sum_{|\alpha| \le N} \frac{1}{\alpha!} \partial^{\alpha} \phi(0) x^{\alpha} \rangle = \sum_{|\alpha| \le N} \frac{\langle F, x^{\alpha} \rangle}{\alpha!} \partial^{\alpha} \phi(0) \\ &= \langle \sum_{|\alpha| \le N} (-1)^{|\alpha|} \frac{\langle \hat{F}, x^{\alpha} \rangle}{\alpha!} \partial^{\alpha} \delta, \phi \rangle. \end{split}$$

Hence $\hat{F} = \sum_{|\alpha| \leq N} (-1)^{|\alpha|} \frac{\langle \hat{F}, x^{\alpha} \rangle}{\alpha!} \partial^{\alpha} \delta$ and F is a polynomial.

Problem 2. Let f be a continuous function on $\mathbb{R}^n \setminus \{0\}$ which is homogeneous of degree -n, $f(rx) = r^{-n}f(x)$ for r > 0, and has mean 0 on the unit sphere. Show that f is not locally integrable near 0 unless f = 0, but f defines a tempered distribution PV(f) by

$$\langle PV(f), \phi \rangle = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} f(x)\phi(x)dx.$$

The limit equals

$$\int_{|x| \le 1} f(x) [\phi(x) - \phi(0)] dx + \int_{|x| > 1} f(x) \phi(x) dx,$$

and these integrals converge absolutely.

Proof. We show f is locally integrable near 0 unless f = 0. Indeed for $\epsilon > 0$ we have

$$\int_{|x|<\epsilon} |f(x)|dx = \int_0^\epsilon \int_{S^{n-1}} |f(ry)|r^{n-1}d\sigma(y)dr = \int_0^\epsilon \frac{dr}{r} \int_{S^{n-1}} |f(y)|d\sigma(y)|d\sigma(y)|d\sigma(y)|d\sigma(y)$$

is finite unless f = 0. Now fix $\epsilon < 1$, we have

$$\begin{aligned} |\int_{\epsilon < |x| \le 1} f(x)\phi(x)dx| &= |\int_{\epsilon < |x| \le 1} f(x)(\phi(x) - \phi(0))dx| \\ &\le \int_{S^{n-1}} |f(y)| \int_{\epsilon}^{1} |\frac{\phi(ry) - \phi(0)}{r}| dr d\sigma(y) \\ &\le (1 - \epsilon) \|f\|_{L^{1}(S^{n-1})} \|\phi\|_{H_{1}(\mathbb{R}^{n})} < \infty \end{aligned}$$

where the first equality follows easily from f is homogeneous with mean 0 on unit sphere. This proves $\int_{\epsilon < |x| \le 1} f(x)\phi(x)dx = \int_{\epsilon < |x| \le 1} f(x)[]\phi(x) - \phi(0)]dx$ absolutely converges as $\epsilon \to 0$. On the other hand, we have

$$\begin{split} |\int_{|x|>1} f(x)\phi(x)dx| &= \int_{1}^{\infty} \int_{S^{n-1}} |f(y)| \frac{|\phi(ry)|}{r} dr d\sigma(y) \\ &\leq \|f\|_{L^{1}(S^{n-1})} \|\phi\|_{N,0} \int_{1}^{\infty} \frac{dr}{r(1+r)^{N}} < \infty \quad \text{for some big } N. \end{split}$$

PROBLEM SET 8

So $\lim_{\epsilon \to 0} \int_{|x| > \epsilon} f(x)\phi(x)dx$ exists as $\int_{|x| \le 1} f(x)[\phi(x) - \phi(0)]dx + \int_{|x| > 1} f(x)\phi(x)dx$. \Box

Problem 3. On \mathbb{R} , let $F = PV((\pi x)^{-1})$. Check that

- (1) $\hat{F}(\xi) = -i\operatorname{sgn}\xi.$
- (2) The map $\phi \to F * \phi$, initially defined on Schwartz functions, extends to a unitary operator on L^2 .

This is called the Hilbert transform.

Proof. (1) We calculate by definition,

$$\hat{F}(\xi) = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{1}{\pi x} e^{-2\pi i x \xi} dx$$

$$= -\frac{i \operatorname{sgn}(\xi)}{\pi} \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{\sin(2\pi x |\xi|)}{x} dx \quad \text{since } \cos(2\pi x \xi) / x \text{ is odd and sin is odd}$$

$$= -\frac{i \operatorname{sgn}(\xi)}{\pi} \lim_{\epsilon \to 0} \int_{|t| \ge 2\pi |\xi| \epsilon} \frac{\sin t}{t} dt \quad (t = 2\pi |\xi| x)$$

$$= -i \operatorname{sgn}(\xi).$$

(2) Notice $|\hat{F}| = 1$, so for $\phi, \psi \in S$ we have

$$\langle F * \phi, F * \psi \rangle_2 = \langle \hat{F} \hat{\phi}, \hat{F} \hat{\psi} \rangle_2 = \langle |\hat{F}|^2 \hat{\phi}, \hat{\psi} \rangle_2 = \langle \hat{\phi}, \hat{\psi} \rangle_2 = \langle \phi, \psi \rangle_2.$$

So $\phi \to F * \phi$ is a unitary operator on S under L^2 inner product, and naturally extends to a unitary operator on L^2 since S is dense in L^2 under L^2 -norm.

Problem 4. Give $C^{\infty}(\mathbb{T}^n)$ the Fréchet space topology defined by the seminorms $\|\phi\|_{(\alpha)} = \|\partial^{\alpha}\phi\|_{\infty}$. The space $\mathcal{D}'(\mathbb{T}^n)$ of distributions on \mathbb{T}^n is the space of continuous linear functionals on $C^{\infty}(\mathbb{T}^n)$, with the weak * topology. Prove the following.

- (1) Distributions on \mathbb{T}^n can be translated, differentiated, and multiplied by C^{∞} functions, just as on \mathbb{R}^n .
- (2) If $F \in \mathcal{D}'(\mathbb{T}^n)$, its Fourier transform is the function \hat{F} on \mathbb{Z}^n defined by $\hat{F}(\kappa) = \langle F, E_\kappa \rangle$ where $E_\kappa(x) = e^{-2\pi i \kappa \cdot x}$. Prove that a function g on \mathbb{Z}^n is the Fourier transform of a distribution on \mathbb{T}^n iff $|g(\kappa)| \leq C(1+|\kappa|)^N$ for some C, N > 0.

(3) If
$$F \in \mathcal{D}'(\mathbb{T}^n)$$
 and $\phi \in C^{\infty}(\mathbb{T}^n)$, prove $\langle F, \overline{\phi} \rangle = \sum_{\kappa} \hat{F}(\kappa) \hat{\phi}(\kappa)$.

- *Proof.* (1) We may treat functions on \mathbb{T}^n as *n*-periodic functions on \mathbb{R}^n and translation, differentiation, multiplication by smooth functions are defined on functions, hence one can dualize those operation to distributions.
 - (2) The only if part easily follows from the continuity of $F \in \mathcal{D}'(\mathbb{T}^n)$. To elaborate, we may find C, N so that $|\langle F, \phi \rangle| \leq C \sum_{|\alpha| \leq N} \|\phi\|_{(\alpha)}$, in particular

$$|\hat{F}(\kappa)| \le C \sum_{|\alpha| \le N} \sup_{x \in \mathbb{T}^n} |\partial^{\alpha} E_k(x)| \le C' (1+|\kappa|)^N.$$

Now suppose g is a function on \mathbb{Z}^n satisfying $|g(\kappa)| \leq C(1+|\kappa|)^N$ for some C, N > 0. Consider $S_m g(x) = \sum_{|\kappa| \leq m} g(\kappa) e^{2\pi i \kappa \cdot x}$. It is clear that $S_m g \in C^{\infty}(\mathbb{T}^n)$, and $\lim_{m \to \infty} S_m g$ is the Fourier inversion of g if the limit

JIAHAO HU

exists, thus it remains to show $S_m g$ converges to a distribution as $m \to \infty$. For any $\phi \in C^{\infty}(\mathbb{T}^n)$, we have

$$\int_{\mathbb{T}^n} S_m g(x) \phi(x) dx = \sum_{|\kappa| \le m} g(\kappa) \int_{\mathbb{T}^n} \phi(x) e^{2\pi i \kappa \cdot x} dx = \sum_{|\kappa| \le m} g(\kappa) \hat{\phi}(-\kappa).$$

Since $|g(\kappa)| \leq C(1+|\kappa|)^N$ whilst ϕ is smooth so that $|\hat{\phi}(-\kappa)|$ decays rapidly than any polynomial, we can find constant C' so that $|g(\kappa)\hat{\phi}(-\kappa)| \leq$ $C'(1+|\kappa|^{-n-1})$ for all $\kappa \in \mathbb{T}^n$. This proves $\sum_{|\kappa| \leq m} g(\kappa)\hat{\phi}(-\kappa)$ is absolutely convergent as $m \to \infty$, thus $\lim_{m \to \infty} S_m g$ exists.

(3) Replacing ϕ by $\bar{\phi}$ and g by \hat{F} , the identity follows from almost exactly the same calculation in (2).

Problem 5. If $k \in \mathbb{N}$, H_k is the space of L^2 functions whose L^2 derivatives up to order k exist. Show that these strong derivatives coincide with the distribution derivatives.

Proof. Without loss of generality, we prove the case where k = 1, n = 1. Let $f \in H_1$. For any $\phi \in C_c^{\infty}$ and y > 0, then by an easy change of variable we have

$$\begin{split} \langle \frac{f(x+y) - f(x)}{y}, \phi \rangle_{L^2_x} &= \int \frac{f(x+y) - f(x)}{y} \phi(x) dx = \int f(x) \frac{\phi(x-y) - \phi(x)}{y} dx \\ &= \langle f, \frac{\phi(x-y) - \phi(x)}{y} \rangle_{L^2_x}. \end{split}$$

Now since $f \in H^1$, $\phi \in C_c^{\infty}$, $\frac{f(x+y)-f(x)}{y}$, resp. $\frac{\phi(x-y)-\phi(x)}{y}$, converges to f'(x) resp. $-\phi'(x)$ in L^2 as $y \to 0$. So taking limit in the above identity, we have $\langle f', \phi \rangle = -\langle f, \phi' \rangle$. This proves the strong derivative of f is its distributional derivative. \Box

4